Search results for "Valve metals"

showing 3 items of 3 documents

Anodization and anodic oxides

2018

Anodizing is a low-temperature, low-cost electrochemical process allowing for the growth, on the surface of valve metals and valve metal alloys, of anodic oxides of tunable composition and properties. This article is an overview on theoretical aspects concerning the general aspects of the kinetics of growth of barrier and porous anodic oxides and some of their present and possibly future technological applications of anodic oxides. The first part of the article is devoted to anodic oxide growth models, from Guntherschulze and Betz work (in 1934) to the more recent results on barrier and porous oxide films. The second part is focused on industrial processes to fabricate anodic oxides and the…

Materials scienceNanotechnology02 engineering and technologyDielectricAnodizingElectrochemistryCorrosionAl alloysMicroelectronicsCoatings0502 economics and businessGrowth kineticsValve metals050207 economicsThin filmPorosityHigh-k materialsElectrolytic capacitorBarrier-type oxidesAnodizing05 social sciencesMetallurgy021001 nanoscience & nanotechnologyPorous-type oxidesAnodeCorrosionSettore ING-IND/23 - Chimica Fisica ApplicataAnodic oxidesAlumina membranesDielectrics0210 nano-technologyAluminum
researchProduct

Photoelectrochemical evidence of Nitrogen Incorporation during Anodizing of valve metals alloys

2015

Amorphous and/or nanocrystalline oxide films can be easily prepared electrochemically by anodizing. The anodizing allows to grow oxides with structural and compositional features easily and strictly controlled by the process parameters.

Photoelectrochemical characterization Nitrogen Incorporation Anodizing valve metals alloys
researchProduct

Photoelectrochemical evidence of inhomogeneous composition at nm length scale of anodic films on valve metals alloys

2015

Anodic films of different thickness (∼30 nm and 70 nm) were grown by anodizing sputtering-deposited Ta-19at% Al to different formation voltages. N incorporation into the anodic films was inducing by performing the anodizing process in ammonium containing solutions. Layered anodic films were prepared by a double formation procedure with a first anodizing step in ammonium biborate solution and second anodizing step in borate buffer solution, or vice versa. Glow Discharge Optical Emission Spectroscopy was employed to show the distribution of N across the oxide. Photoelectrochemical measurements evidenced a red shift of the light absorption threshold due to N incorporation. A model was proposed…

Settore ING-IND/23 - Chimica Fisica ApplicataPhotoelectrochemical characterization nm length scale anodic films valve metals alloys
researchProduct